On ideally finite Lie algebras which are lower semi-modular
نویسندگان
چکیده
منابع مشابه
Koszul duality and modular representations of semi-simple Lie algebras
In this paper we prove that if G is a connected, simplyconnected, semi-simple algebraic group over an algebraically closed field of sufficiently large characteristic, then all the blocks of the restricted enveloping algebra (Ug)0 of the Lie algebra g of G can be endowed with a Koszul grading (extending results of Andersen, Jantzen, Soergel). We also give information about the Koszul dual rings....
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملSimple Lie Algebras Which Generalize Witt Algebras
We introduce a new class of simple Lie algebras W (n, m) (see Definition 1) that generalize the Witt algebra by using " exponential " functions, and also a subalgebra W * (n, m) thereof; and we show each derivation of W * (1, 0) can be written as a sum of an inner derivation and a scalar derivation (Theorem. 2) [10]. The Lie algebra W (n, m) is Z-graded and is infinite growth [4].
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملOn Bernstein Algebras Which Are Train Algebras
holds in A. This class of algebras was introduced by Holgate [4], following the original work of Bernstein [2] and subsequent investigations by Lyubich [5] on idempotent quadratic maps from a real simplex into itself. A summary of known results on Bernstein algebras (up to 1980) is given in Worz-Busekros [8], which will also be used as a basic reference on algebras in genetics. All definitions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1985
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500003151